Sliding of centrosome-unattached microtubules defines key features of neuronal phenotype

نویسندگان

  • Anand N. Rao
  • Aditi Falnikar
  • Eileen T. O’Toole
  • Mary K. Morphew
  • Andreas Hoenger
  • Michael W. Davidson
  • Xiaobing Yuan
  • Peter W. Baas
چکیده

Contemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs. When this sliding is pharmacologically inhibited, the leading process becomes shorter, migration of the neuron deviates from its normal path, and the MTs within the leading process become buckled. Partial depletion of ninein, a protein that attaches MTs to the centrosome, leads to greater numbers of centrosome-unattached MTs as well as greater sliding of MTs. Concomitantly, the soma becomes less mobile and the leading process acquires an elongated morphology akin to an axon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurons let it slide

During mammalian brain development, many neurons migrate away from the site where they are born to settle in distant locations where they send out dendrites and axons to connect with other neurons. Both neuronal migration and axon/dendrite extension depend on forces generated by microtubule-based motor proteins such as cytoplasmic dynein. The effects of these forces depend, however, on the orga...

متن کامل

The neuronal centrosome as a generator of microtubules for the axon.

I . Introduction 11. Evidence of a Centrosomal Origin for Axonal Microtubules A. Axonal Microtubules Do Not Originate within the Axon B. Nucleation and Release of Microtubules from the Neuronal Centrosome C. Inhibition of Microtubule Nucleation at the Centrosome Compromises Axon Growth D. Centrosomal Microtubules Are Transported into the Axon Ill. Implications of a Centrosomal Origin for Axonal...

متن کامل

Microtubule nucleation and release from the neuronal centrosome

We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into othe...

متن کامل

Microtubules released from the neuronal centrosome are transported into the axon.

There is controversy concerning the source of new microtubules required for the development of neuronal axons. We have proposed that microtubules are released from the centrosome within the cell body of the neuron and are then translocated into the axon to support its growth. To investigate this possibility, we have developed an experimental regime that permits us to determine the fate of a sma...

متن کامل

An Essential Role for Katanin in Severing Microtubules in the Neuron

Several lines of evidence suggest that microtubules are nucleated at the neuronal centrosome, and then released for transport into axons and dendrites. Here we sought to determine whether the microtubule-severing protein known as katanin mediates microtubule release from the neuronal centrosome. Immunomicroscopic analyses on cultured sympathetic neurons show that katanin is present at the centr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 213  شماره 

صفحات  -

تاریخ انتشار 2016